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Introduction

In this paper we treat the radiation problem of a cylinder antenna shrouded
by a concentric axially slotted shell. The source of the cylinder antenna is an
infinite axial slot uniformly excited, with the electric field in the circumferential

direction. In the following five sections we present the.analyses of the problem.

For further details one may also refer to a BRadiation Laboratory Report by
A. Olte and Y. Hayashil.

In the first section we reduce the boundary value problem of the antenna
by employing a conventional series representation of the fields to a Fredholm
integral equation of the first kind. The integral equation uniquely determines
the tangential electric field of the slotted shell for the given source on the cylinder
surface. The kernel of the integral equat-on is compiex, non-hermitian, and has
é. logarithmic singularitv.

In the second section we briefly discuss “he physical aspects of a singular
integral equation which follows by ::iifferentiatlon of the Fredholm integral equation
of the first kind. Hayashi2 was the first to derive the singular equation in:
similar problem.

In the third section we report a solution of the Fredholm integral equation

for the case of a rarrow shell slot. Rerognizing that in a narrow slot the field

distribution is dominated by the edge singularity we are led to a slot field representation

lolte, A. and Y. Hayashi, "On the Antenna Radiation Through a Plasma Sheath "
University of Michigan Radiation Laboratory Report No. 5825-1-F, June 1964,

2 D i .
Hayashi, Y., "Ilectromagnetic Fieid ior Circular Boundaries with Slots." Proc.
Jap. Academy of Sci.. submitted for publication. 1964
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by a Fourier series of a kind where the first term is the dominant one. This idea
has already been applied by Morse and FeshbachB in discussing the scattering of

an electromagnetic wave normally incidert on an axially slosted, perfectly condgcting
cylindrical shell.

In the fourth section of this chapter we report the nwumerical calculations
which are based on the above solution of the Fredholm integral equation. The
purpose oi the calculations is to exhibit the influence of the slotied shell on the
radiationa of the cylinder anterna. The cylinder diameters considered are, in
wavelength, from 0. 2/7 to 1.8/7. The radial spacings between the cyiinder and
the sheli are 0.1/7, 0.05/7, and 9.025/7. 1t will be obvious that for the para~
meter vatues considered the sintted shell does not significantly modify the form of
the cylinider antenna radiation patterr.. However, the pattern is rotated by the
angle between the source on the cylinder surface and the shell slot, although for
the cylinder diameters considered the radiation is nearly omnidirectional inyway.
Even for the largest diameter antenna considered the radiation field is omni-
directional to within +25 per cemé. Therefore, we have chosen to report the
ratio of the radiated power with the slotted shell and without it, as a function of
the source and the shell slot separation angle.

In the fifth section of this chaptor we discuss the accuracy of the approxi-
mate solution of the integral e.quatim, and the error reflected in the power radiated.

We also discuss some of the physical implications of the solution.

3Morse, P.M. and H. Feshbach, M:thods of Theoretical Physics, Part II.
McGraw-Hill, New York, pp.1387-1:-3, 1953.

4Wa‘.t, J R., Electromagnetic Radiation from Cylindrical Structures, Pergamon
Press, New York, p.30, 1959.
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In the last section we briefiy discuss and suminarize the main features of
the results. The slotted shell prevents radiation only for certain parameter
combinations; for most others, the radiation remains the same and for some it

is even enhanced. This section concludes with a discussion of some extensions

Af dhn oyl
UL LT wulin.,

Reduction of the Boundary Value Problem to a Fredholm Integral Equation of the
First Kind

We consider a wedge waveguide of width 260 feeding in the lowest order
transverse electric mode a perfectily conducting circular cylinder of radius a, as
shown in Figure 1. The cylinder is concentrically shrouded by a vanishingly thin
perfectly conducting shell of radius b. The shell has an axial slot of width 29)0.
The center-tc-center circumiereniial displacement of the shell slot and the cylinder
slot is indicaied by the angle 9. We employ a right-hand circular c¢yvlindrical
coordinate system (r,¢, z) for which ¢ is measured counter-clockwise from

tne center of the shell siot and z 1s along the axis of the cylinder. The constitu-

tive parameters € and u are assumed to be real. The rational MKS system of

Jut is impl‘ied for all field quantities.

units is used and the time dependence of e
We have a two-dimensionai problem, since both the antenna structure and

the source is independent of z. Furthermore, it is a three region problem:

0 <r>»a;

<r> a<r<b; r>&. Forthisparticular study we limit it to a two region

problem by considering the tangential electric field ot the cyvlinder slot as given.
We set out to find the fields in the coaxial region and in the free space. The fields

we represent in a series form' .

o
- Stratton, J.A., Eleciromagnetic Thoeory, J.civaw-Hill, New York, p. 361, 1941

3




For a<r>b
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Because of the orthogonality of the circular functions we obtain from (7), (8) and (9)

respectively
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where @' and n are dummy variabies of integration. From (19) and (11) we

obtain -
6+6 ¢
© jn ° ing’
nil sy 3R1) ]
i2mopk D _{ka,kb)B_ N’ f(T.')dJ ‘dn-N_(ka) E(p)e dp (13)
n n n n
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© 0+6 ro
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j2mouk L (ka, kb)C=-d! (Kb) | (e’ dn + 3 (ka) E@ne’F o,
7 6«60 —ﬁo (19

D (ka, kb) = J'(ka)N'(kb) ~ J'(kL)N' (ka) . (15)
n n n 1 n

We observe that (12), (13) and {14) give us the Fourier coefficients of the fields

for both regions once the electric slot fields are known.
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the shell slot field. We seek to find it by enforcing the remaining boundary condition:

the continuity of tae tangential magnetic field through the shell slot, i.e.

@ . a
{20 ., -infp < . 3 _-jng
2. AHTwTY = 27 B 3 (bi+C N (kb)je T, f BB
(16)
We eliminate the coefficients in {16}, and after factoring and transposing of
terms obiain
I N
& er) () 1 \ "o jn@" -inf
Z L @y | E(fe dﬁ'] e’
n==o [H (kb D (ka,kb) B |
@ AL
1 jnn ~jn & -
Z [D (ka, kb) firde dri] € ’ ¢o <P S-”o (17
=-m n 9-60

Interchanging integration with summation, we obtain an integral equation of the form

¢0
E@K(@'. $)ad’ = g6.9); -8 < f <P . (18)
o
where
Hilz)'(ka} «
K - n=0 H<2)'(kb) Dn(ka.kb) cos n(f'4)
n ’
0+6 -
v ? (a)
gl6,9) = f(n) K'"'(n, Pdn (19)
6-6
0
(a) ® €
K '(np-= Z—. D—n(-k—a'@') cos n(n-9)

with €n=1 for n=0, and En'2 for n=1,2,3,..
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The kernel K(P',9) hLas a logarithmic singularity at @ = ¢'. This can be
easily shown by ccnsidering those terms of the series for which n >> kb. The
kernel is non-hermitian since K(§’,¢) =t K(#,9'). The kernel K_(‘a)(n, #) isa
continuous function of 1 and §. We see that the known function of the integral
equation is obtained by tran.sforming.the electric field of the cylinder siot according
to (19).

We have reduced the boundary value problem to a Fredholm integral

equation of the first kind with a non-bermitian kerrel. This is a unique state-

ment of the original problem and no additional conditions need be imposed.

The Appearance of the Singular Integral Equation

It is well known that the normal component of the electric field must be
continuous through an aperture. It is also well known that the continuity of the
tapgential magnetic field through the aperture automatically insures the continuity
of the normal electrical field component as well. The reverse, however, is not
true and therefore the continuity of th2 normal component of the electric field
through the aperture is not sufficiert for a boundary condition.

The continuity condition of the normal component of the electric fieid
through the shell aperture in our case corresponds to an integral equation that is
obtained by differentiating the FredlLolm integral equation of the first kind with
respect to f. We have then

p 0+6

(8] [0} ;
P (K (P, prag’ - k™ (n,ppan, ¢ <p<o

~¢o 0 _90 (20)

where the primes indicate that the kernels are to be differentiated with respect to
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§. The integral of this type ia a similar problem was first obtained by Hayashi

as ncted in the Introduction. Tre aingulayity of the kernel K(§',@) by differentia-
tion has been increased to a Cauchy type singularity and therefore we have io

take the integral in the prinicipal value sense which we explicitly indicate by

P in front of the integration sign. Whereas the Fredholm integral equation

exiots as @ ﬂo’ (20) dces not and we restrict § to the open interval

—¢o <p< ¢O. The kernel K(a)

{n, @) is continuous and the right hand side of
(20) exists even as P+ j_'¢o. Evidently the Cauchy integral equation for this
particular problem admits a, set of solutions. Somehow one has to choose a
solution that satisfies the Fredholm integral equation. One may possibly
choose from the set a solution that satisfies the well kno‘wn condition of the

edge singularity at f = t¢o' This solution is a sum of a certain particular inte-
gral and a certain general solution of the homogeneous equation of (20), both
parts satisfying the edge singularity condition independent of each other. The
amplitude of the general solution of the homogeneous equation clearly remains
arbitrary. If finding the proper amplitude of this part of the solution gives us
the unique slot field, then it may be determined by substituting the total solution
in the Fredholm integral equation. These appear to by the physical aspects of

the singular integral integral equation method used by Hayashi in constructing

a formal solution to a similar boundary value problem.

Solution of the Fredholm Integral Equation {or the Case of a Narrow Slot

The Fredholm integral equation of the {:rst kind (18) was derived for the

cylinder slot of arbitrary width 260. We s.mplify the problem, but retain its
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essential features by letting 90-+ (0. because ther we can let the slot fieid

assume a Diras &-function distribuviion, i.e. (@) = v, 6(9 - @) /2 where v,

is the slot voliage.

In this case then

{
56,9 = v K0,/

We observe that K(§',§) and K(a)

parts with respect to both variables, i.e.

K(p',9) = Ke(¢',¢) + Ko(¢',¢)

(eﬁ)- (6¢)+K (9¢)
where
{2)
o) H (ka) €
Ke(¢',¢) = (4), : cos (nf") cos(nf)
n=0 H’ (kb) Dn(ka,kb)
w H:lz)y(ka) 9
Ko(¢v,¢) - ; H(z)'(kb) Dn(ka, ) Sin (np") sin (n@)
n
{a) S “n
Ke (9,¢) = a m COS(ne) COS (n¢) ‘
n= n
(a) <= 2 . 3
K. 0.9 - nzi B T ¥) sin (n0) sin (ng)

(6,8) may be divided into even and odd

(21)

(22)

(23)

(24a)

(24b)

(24c¢)

(24d)

Since ihe unknown slot field may also be represenied by an ¢ven and an odd part,

E() = Ee(ﬁ) + E0(¢), the Fredholm integral equation becomes

A ¢

O

j E (§)K (@', Pdp’ + E(#)K (9, Mg - = v K(a)(e o)+ K g, ¢}.
4 _¢ € [&] - 8] (8] a

-?

(0] (o]

(25)



We observe that the first integral is an even function in #, while the second

integral is an odd function, therefore vwe have that

4

O

C dn e o 1 (a) ,
be(¢ )Ke\ﬁ ,Pdp = < VK, 6,0 (26)
-¢0
~ ¢o
E (fDK (p',9)dg' = 1 \' K(a)(ﬂ )] (27)
_ o o’ a a o : )
0]

We have succeeded in breaking the Fredholm integral equation into two integral

equations of the same kind. The first one determines the even part of the shell

slot field and the second one, the odd part. Stating the problem in this form means

that we invert two small matrices instead of one large one in order to obtain the
same accuracy in the solution.

Elect romagnetic fields cannct have large spatial variations over distances
that are small compared to the wavelength, except in the vicinity of the sources,
at the discontinuities in the medium constitutive parameters, and at sharp con-
ducting edges. The slot fieid of a narrow slot is therefore dominated by the edge

singularity. We separate this out in the first term of a Fourier representation of

the even and odd parts of the slot field, i.e.

a @
E@=—2> + )., a cosﬂ (28)
€ 5242 -1 ¢ 8
TN -
and
b @ .
E (®) - —+ ) b, sin %’-’9 . (29)
T /¢4_¢2 q=2 o]



We are guided in seiecting t?ue particular forms of the field singularities by

the work of Sommerfeld6 ard Mi]lm'7 on the diffraction by an infinite slit in a
vanishingly thin perfectly conducting plane screen. Using these ffelds representa-
tions . we convert each integral equation into an infinite set of algebraic equations

by straightfoward integrations. We summarize the results for (26) in matrix

notation as
(e) 1 (e) ,
[hmq] aq]— A lm] (30)
where
© ‘2) (ka) J (o) sin (nf )
h = € -
o0 é—=n (2) (kb) Dn(ka,kb) nﬁo
(2)* .2
, 9 H (ka) sin”(nf )
g - 407" Z (;) D (kt;. W a7 9!
o n= (kb) n (gm -(n¢o)
(2)'
e . @ H " (ka) Jo(npo) n sin(nfl,) > 1
mo = H(z)'(kb\ Dn(ka,kb) (m1r)2-(n¢0)2 =
(2) 2 2 ..
h(e = 2¢2(_1)q+1 Z, B (ka) 1 1 osm (n¢o'
mq o 67 12 Dol K [iqn? (o )7 J[mm- np )]
m>1, g1,

6Sommerxelcl A. Optics, Lectures on Theoretical Physics, Vol. 1V, Academlc
Press, New York and London, pp 273-289, 1964.

7
Millar, R.F., "A Note on Diffraction by an Infinite Slit," Can.d. Phys., 38,
No.1, pp 38-47, 1960.
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€ sin (nf )
(e)_ f‘* n o
£ T(.)-[::)n(m,kb) nf } cos (n6)

V]

. @© sin{nf ) ‘i
(e} n 0
A ——
!m Ly [D (ka, kb) 2 .2 cos(nf), m> 1.
n=1 n {mam)” - (nﬁo,

- and for (27) as

Lh(‘” b] Y I(O)] , (31)

m q a a’ m
where
(2)' . nd
h(o) = 4& > Hn tha) 1 Sm(nﬁo) ’ 1 )2 cos x dx
ml T C ()'(kb) D _(ka, kb) (m”)z_(ngo)z 0 r?ﬂ-; '
HS)'(ka) . qm sin2 (n¢0)

gl
=49 (-1 7 ; ; .
a o £ (2) (cpy Dplka, kb) Eqw)z_(n%)z] [imn’? 4n¢o)2]

(ka) sin{nf )

(o) _ >QL 2 o) )

1 - - ‘I sin(nf), m> 1
LH o) (kb) D (ka, kb) (m”)Z_(n¢‘))2

We have reduced the problem of finding the shell slot electric field to an
inversion of two complex matrices. By the inclusion of the edge singularity in the
first term for each part of the slot field we have enhanced the {irst column at the
expense of the rest of the matrix. The enhancement is particularly large for a
narrow slot. Thus the problem has been set up in a way so as to lead to the
narrow slot approximation. However, befcre we delve into the numerical details,
we should indicate the physical quantities we want to find.

We are interested in the narrow slot antennas. Further. we restrict the

radial separation of the shell from the cylinder to a small fraction of the wavelength

/2



A, 2. kb-ka << 1. Uncet these conditions the form of the radiation patter of the
cylinder with the shel! will be essentially the same as for ‘the cylinder alone.
However, the pcwer radiated into the free space will depend most probably on

the orientation ¢f the shell, Tuerefore, we wani to show how the radiated power
depends on the siot ficid in.the next few pagagraphs.

The power radiated per unit length by the shell slot is given by

tr

! r27r o _ 9
P= =R J " xH* - a_rdp = % 2wp kT A A% (32)
27 ¢ T n n
0 n=-@

Substituting (12) in the preceding equation and (28) and (29) in the resulting equation,

we have, after the interchange of integration with summation

1 (o) en ! w (—l)qa
P _—__—2 ———— J Qn¢ )a -2¢ nbm(nﬂ) ) '_‘_‘2'_‘_2
2rwu  n= l (kb)l a=1 (qn) —(nibo)
@ (—1)qq7r bq “
+ 2 . ‘t —_— S (5%
¢051n(n¢0, 5 5 (33)
q=1  (qm)"-(nf )
From the behavior of the*denominator in the general term of the series we conclude
that only Z2Zkb terms need be considered independent of the slot width. A com-
putation will show that for a narrow slot the second part of the numerator is
negligible compared to a_ term. Only when b1 becomes substantially larger
than ao do we have to iake, in some special cases, the second part intc considera-
tion. Also in the first part of the numerator the aq term is negligible compared
to the ao of the narrow slot. Thus we have that {or a narrow slot,
9 2
laor‘ 2kb € ,T (n¢ i
P(ka, kb, G} = . (39)

27 wu ! n (kb)‘



The power radiated by the cylinder without the shell is gaven by

kY t 2 2&& - €
. : e 1e {0 n
Plka} 22 3 | va ‘ SN v e (35)
2wuira) n=0 IH {ka) ‘

We define the voltage of the slotted shell as

~

\ %

v, =b E(p)dg , ‘ (36)
)4,
and it follows that
V., =ba . (37)

b o)

The ratio of equations (34) and (35) we may write as

2
P(Pk(ia’_‘;__b:_‘?lzg\% (3)2 Flka, kb, ) , (38)
where
F(ka,kb,f ) = I—Zkb i J (n¢ ) ] {%{i i }—1 (39)
PPt Lr; l t2) ~ l (z)'(ka)‘ ' '

For further discussion we elect to keep Va = a voits, whether or not the cylinder

is enclosed by the sheil. Then (38) takes the form

P(ka, kb.9)
P(ka)

2
= iao! F(ka, kb,§ ) . ' (40)
and a  we regard as a dimensionless quantity. The last formula gives the
enhancement (or depresgion) of radiation when the cylinder is enclosed by the
shell. Aside from the essentially geometric factor F, all depends on the ampli-

tude of the ao term in the sheli slot field expression.

Since Maxwell's equations are linear the result (38) is independent of

/9



* the amplitude of the source voitage Va; thus the right hand sides of (38) and (40)

must be equal, and we obtain

i
\4
a

= = inol , (41)

The lasi forinula expresses the transformer properties of the shell. We
‘ .
. may regard (kb/ ka)éaol as the transformer turns ratio.
We are fortunate that for a narrow slot the a0 term is also dominant in

the slot field representation. This sssertion is expected to hold when
i d . E . - > . Ii
‘ ﬂo << m 2b¢o <<X; b-a> 2b¢o (42)

From (30) with the understanding that Va = a, we have

(e}, (e
~ 4
a 'ao /hoo (43)
| When Dn(ka, kb) —p 0, then {43) takes on the particularly simple form
2
0 o~ Hn (kb) cos (n8) (44)
- ' Y 2 N
(o) ‘Hilz) (ka) Uo(nao)

Thte lowest order root of Dl(ka,kb) ro':curs8 when kb= 2-ka, ka <1, thatis,
when the mean circumference is approximately equal to the wavelength. The

> .lowest order root of Dz(ka, kb) occurs when kb= 4-ka, ka<2. Of particular
interest are also the roots of Do(ka, kb), because then a does not depend on

9
the angle 9. We list the lowest order root of Do(ka, kb)~ for some parameter

values of possible interest in Table L

8Truell, R., "Concerning the Roots of J;l(x}Nr‘l(kx) —J;l(kx)Nr'lhc)=0, " J.Appl. Phys.
14, pp 350-352, 1943.

9Jahnke—Emde-L'(')sch, Tables of Higher T'uactions, McGraw-Hill, New York,

p. 198, 1960.
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TABLE I: PARAMETERS FOX L.OWEST ORDER KOOT
OF Do(ka, kb)

ka kb/ka
31. 427 1.1
15.7275 1.2
10. 4993 1.3
7.8875 1.4
6.2702 1.5

The Results

We are left with the task of computing ao. The series expansion of the
numerator and denominator of a_ involve Bessel functions and Neumann
functions. In view of the intended applications of the results of this sfudy, we
restrict the radius of the shell to kb < 2.

We use the exact deries for computing the cylindrical functions of order
0,1,2,3,4, and 5. Recursion relations are used to compute orders 6 and 7. For

10
orders greater than 7 we use the small argument ~ appyoximation to obtain

2 +1
L o __mEDT _ ka BT (45)
Dn(xa., kh) n[l _(ia_ )ZnJ kb
kb

(2>,

Hn {La) . (kb)n+1 a
_—-(2)'_,_ —_ E; . ( b)
Hn {kh)

(e)

and l(e). We retain only five
00 o .

We sum 90 terms in the serif:s determining h
terms in the F(ka, kb, ¢0) series. The computations were performed on a digital

computer for the slot width of 0.06 radians, and ka in steps of 0.2 from 0.2 to 1. &,

for each step, kb-ka = 0.05, 0.10, 0.20

1OIbid_ , bp.135-139.
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We elect to present the results {o ihe following forms. We choose
10log {i’(ka,kb,&)/ﬁk&g as the ordinate and 6 as the abscissa in Figures 2
through 10. A zero on the ordinate axis means that the source radiates the
same amount of power into the free space with and without the slotted shell. A
negative numhier, say -20, means that introduction of the slotted shell decreases
the radiated power to one-hundredth of the previous value, while +20 means
that the radiated power is increased by a factor on one hundred. The origin on
the ordinate axis (6 =0°) n’xeans that the cylinder slot is under the shell slot,
and +9 - 1800 means that the slots are on the opposite sides of the cylinder.

The radiation curves are even functions in 6.

All along we assume that the source amplitude on the cylinder remains
unchanged, i.e. the voltage of the cylinder slot remains at 'a' volts. Thus
these calculations do not include the de-tuning of the antenna that must arise in
most cases when it is surrounded by a perfectly conducting slotted shell. How-
ever, these caiculations dc show the effect the slotted shell has on the coupling
between the line source of the cylindrical antenna and the radiation field in the
free space. .

In Figure 2, the antenna diameter is 9—7—r—l- A(ka = 0.2), where X is
the free space wavelength. Enclosing this antenna by the siotted shell increases
the radiated power, the bigger the separation between the antenna and the shell,
the more radiation we get, which is only weakly dependent on the source and the

slot separation angle 8. For kb-ka = 0.05, 0.10, 0.20, the radiated power is

/7



increased by 3, 7.5 and i3 db, respectively. The maximum increase is when
= 180° and the mindmum when 9 =  The difference between maximum and
minimum for a given kb is only about 2db.

In Figure 3, we have increased the antenna diameter to ka =0. 40 and
the closer the shell is to the anteana the more radiation we get, which is just
the opposite situation we had when ka = 0.2 in ihe preceding figure. When
kb-ka = 0.05, the radiation is increased by i1.5db when 0 = 00, and increased
to 23.5db when 6 — 180°. When we increase kb-ka to 0.10, the radiation very
significantly decreases: when 9=0O we have only ‘~1db, however the radiation
increases to 13db as @ increases to 180°. Increasing kb-ka to 0. 20 further
reduces the radiation: at 6 = 0° we have -18db and the radiation increases
only to+2dbas 68 -» 180°4 '

In Figure 4, we have ka= 0.6 and the farther the shell is from the
antenna, the more it depresses the radiation. When kb-ka = 0.05, the radiation
is ~-3db at 8 = 0, but decreases to a deep minimum (the approximation gives
zero radiated power, but this is not expected to he true) at 6= 360, and from
then rapidly rises to +6dbas 6 < 180°. Increasing kb-ka to 0.10 depresses
radiation at 6 = 0° to -5db and the deep minima moves to 6 = 410; as 6 -»180°
the radiation recovers to +2.5db. As kb-ka -#0.2 the curve is depressed all
along below zero, and the deep minima moves further to the right.

In Figure 5 the ircrease of ka to 0. 80 has brought, maintaiiing the same
order, all three curves closer together, and minima have moved further to the

. (]
right. When 6= 0° the radiation is a few db below zero; at 180 either just

above or below zero.
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In Figure f we have ka=1.0. Tke minima have moved farther to the
right and for the three curves occur between 90° and 1000. The order of the
curves has been reversed: the larger the kb-ka value, the more radiation
we get into the free space. At 9=0°, and 1800, kb-ka = 0.05 gives 0db,
kb-ka = 0. 10 gives +0. 5db and kb-ka = 0.20 gives 2db.

In Figure 7 we have ka = 1.2 and the minima are occurring between 105°
and 1150. The curve ordering remains the same as in the preceding figure, but
the radiation is enhanced for most 6 angles, especially so for kb - ka = 0. 20.
For this curve the radiation at €=0" and 180° is +13db and +16db, respectively.

In Figure 8 we have increased the antenna radius to ka=1.4, and the
minimaé now occur between 115° and 120°. The curves have started to reverse
the order. The kb-ka = 0.20 cur-ve has dropped about 15dLk below the other curves
and is approximately where the other two curves were in the preceding figure.
For the high curves the maximum radiztion is 18db. All three curves show a
second minimum starting t» form at 6= 0°.

In Figure 9 we have increased ka to 1.6, and the reversal of the curve
order has been completed. i.e. increased kb-ka decreases the radiation. Also
two sets of minima have formed: the new set is between 10° to 20° and the old
set has moved to 125° to 120°. The radiation is increased only by 6. 2 db at the
maximum.

In Figure 10 we have ka = 1.8, and all three curves have moved very
closely together. The first minima occur at about 33° and the second at about

120°. At 0° the radiation is -1db; at 80° and 180°, it is +1db.
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Discussion

In the figures presented, we have increased the radius of the cylinder, a,
in nine equa! steps from 0.1/xX t00.9/x A. In all nine cases we have shown
thg effect of the slotted shell on the radiation when the radial separation between
the cylinder and the shell is 0.025/x A, 0.05/x XA, and 0.10/7 ). The saell
increases radiation independently of 8 when a <0.1/m X. A very substantial
increase in radiation is8 maintained as the radius of the cylindzr is increased
to 0.2/7x A. As aisincreased to 0.3/r A and beyond, a deep minimum
appears in the curves which indicates that for those angles the slotted shell
decoupleg the cylindrical antenna from the free space. When a is 0.4/7 A,
or 0.5/ X the slotted shell leaves the antenna radiation largely unaffected for
extensive ranges of 8, except when the slot is in the 900 range from the source
where then deep minima occur. As a is increased to 0.6/7 A the antenna
radiation is enhanced, and also becomes sensitive to the cylinder and the slotted
shell separation distance. The same thing remains true as a is further increased
to 0. 7/1r A, except that a new minimum appears to form at 6=0°0 As a is
further increased to 0.8/7 X, both the radiation enhancement and the sen-
sitivity of the radiation enhancemen! on the cylindrical antenna and the slotted
shell separation markedly decrease for all 6 values. Two deep minima have
formed as well. Increasing a further to 0.9/7 X reduces the radiation en-
hancement practically to zero, and the radiation becomes independent of the

anterna and the slotted shell radial separation. This also occurred at a = 0.5/7 A.



This phenomenon appears (¢ be associated with the 'resonances’ in the coaxial

cavity formed hy the cylindricil antenna and the coaxial shell. Tl;e 'resonances’

occur when Dn(ka,kb) =0. For our range of variables the first 'resonance’' appears

when ka~1, the gecond when ka~2, i.e. a~0.5/7 X, and 1/m A, respectively.

In equation (40) essentially a geometrical factor relates the radiated

power per unit length to the square of the amplitude of the a coefficient. This

factor we denoted by F, and in particular cases consider here, the infinite series

‘was approximated by five terms, i.e.

€J (n¢ ) [5
Fika, kb, 8 ) - , Z:d : ] (47)
[ e @ (kb)l] [H‘z) (k)|

We plot F(ka, kb,ﬁo) in Figure 11 for the same ranges of variables as appeared

in the preceding figures. Since the shell is close to the cylinder in the three cases

considered we have that the factor F is close to unity when ka > 1. Only for

ka <1 do we have a substaniial increase of the factor above unity. Using this

factor we can very simply obtain the ratic of the slot voltages from the preceding
figures. From (38) we have
V. 12

- 1010g k2. kb,6) Tk

ka 2 ., /
) - 10log L(’.R_b—) F(ka, kb, 950)] ) 148)

We notice that in the second term on the right hand side the argument of the
log is close to unity. Thus for most parameter configurations the Figures 2
through 10 give also directly the ratio of the slot voltages as a function of 6

We may add that in this approximation the phase of Va is constant between the

minima, and it suffers a 1800 vhange as one goes through a minimum. The slot
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voltage phase is given by the phase of 1 / h:: and the 182° phase change comés
from the sign reversal of 1’{;’) on going through the minimum.

We have presented the approximate solution of the integral equation (26),
and discussed to some axtent the physical c?nsequences of this solutiork The
method éf approximation suggested iiself from the res?lt.s of the narrow slot
in a plane screen. The use of the same leading terms in the slot ficld represen-
tation is justified largely on the physical grounds and it leads to the geometrical
restrictions (42). Although we feel the approximation is a good one for the
range of parameters discussed, a quantitative statement of the slet voitage approxi-
mation would be very cesirable. We may truncate the matrix in (30) and invert
it. Thia procedure is laborious, the resuits may not be conclusive as {0 the
error in any case, and particularly so when the original approximation is a good

‘one. We choose to go back to the integral equation itself. We rewrite it in the

form

0o
(a)(e p)] j ° Ee(¢')Ke(¢',¢)dgr}' -1=0 . (49)
4,

When we use the approximaie solution, the left hand side of the above equaticon
will not be quite zero. This difference we denote by A(e)(¢), i.e

¢

) ( L) . _
N [ (@) f”_j P EL@IK @, Bap' - 1. p<p<p (50

where the prime on the field indicates that it is the approximate solution e

o

have obtained, i.e.
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Eé(ﬁc) = ._(Th T T — ) (51)
We find that

(e)
1 (C)] -1 (ka) €J (ng )
(e) (a) ﬁl: o "o
AT = [K o, ¢)‘] TZ)' D_.(ka, T5) cos(n@)-1 ,

fi1.)
LAY/

(52)
In Table II we present some of the calculations from (52) for the parameters of
Figures 2, 5, 6 and 9. The lf)e)(e) and the Kf:)(e,ﬁ) series have been
summed to 90 terms, the other two series to 200 terms. The calculations
showed that the approximate solution (51) 'satisfies' the integral equation
essentially independent of the angle 6. In the table we have shown how (e)ﬁ)
depends on the field point coordinate @§. We have carried out the computations
for +§ =0, 0.015, and 8.030, i.e. at the slot center, half-way to either end,
and at either slot edge.

TABLE I: VALUES OF A°(g)

A9 gor g =0.030
ke kbka | §0 ¢=+0.015 g=+0.030 |
0.40 0.05  0.030-j0.013 0.063+]0. 032 9.30+30. 10
0.40 0.10  -0.015-j0.0045 0.037+j0.0097  -0.12-j0. 030
, 0.40  0.20  -0.010-j0.0017 0.0224j0.0035  -0.072-j0.011
1.0 0.05 0. 0004-j0.0000002  -0.0004+j0. 000001  0.0014-j0. 000004
1.0 0.10  0.0010-j0.000008  -0.0016+j0.00002  ©.005-j0.00006
1.0 0.20  0.0040-j0. 00023 -0.0077+i0.0005  0.024-j0.0016
1.2 0.05  0.0052-j0.00001 -0. 004+j0. 0002 0. 017-j0. 00067
1.2 0.10  0.0082-j0.00055 ~0. 013+j0. 0015 0. 043-j0. 0048
1.2 0.20  0.024-j0.041 -0. 047+j0. 090 0. 14-j0. 27
1.8 0.05  -0.0060+j0. 000027 0.0033+0. 060085 0. 013-j0. 00033
1.8 0.10  -0.0050-j0. 000037 0. 0046+j0. 00018 0. 015-j0. 00062
1.8 0.20  -0.0036-j0.0001 0.0053+j0. 00026 0. 017-0. 00083
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The approximate solution 'satlisfies' the integral equation better at the slot
center and the worst at ihe slot edges. Also it appears that the integral equation
is 'satisfied' better when the radiation is insensitive to the cylinder and the shell
radial separation, i.e. when we are closer to some particular co-axial 'resonance'’
thaa when in between them. )

In order to be able to make a quantitative estimate of the error we rewrite

(49! in the form

[

o ‘
o}
Taking the absolute values we have
g, .
. J  #.0a | < | x26,p] |50 )| (54)
P fe00-E80) k@.pap| < |k P6.p] |4 )]
o
Since K(a)(e, #) is 2 real function we may argue that at the maximum

e

) |e @ . (55)

Ee(yb)—Eé(m =
and hence

EL(B) E -} A(e)(%ﬂ E ) . (5(;?
From Table II and the last formula we compute that the maximum possible error
in the slot field is 22 per cent for ka = 0.40, 2.4 per cent for ka = 0.0, 32 per cent
for ka=1.2 and 1.7 per cent for ka = 1. 8. For the radiation this corresponds
to maximum errors of 1.7, 0.2, 2.4 and 0. 16db, respectively. Thus, we feel

that the maximum possible error in the data plotted with the exception of the

radiation minima, should be a few tenths of a db when the curves are close together,
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and a few d> when they are ieparnted, i.e. when we are far from a particular
co-axial resonance. The nuture of (33) indicates ihe minima in the radiation
coupling curves for the slot width considered should be at least 25db deep.
Some further work is necessarty to establish the depth of the minima.

We have computed the radiation through the shell for three different shell
spacings from the cylinder. For the parax.neters we have selected it would
appear that bringing the shell closer to the cylinder in most cases gives stronger
radiation than letting the shell be farther away from the cylinder. However, the
type of the problems we have dces not allow us to extrapolate these results in
either direction. Further calculations are necessary to establish this behavior.
However, we may offer some comments based on simple physical arguments.

It would appear that the radiaticn goes to zero as the 8lotted shell coalesces with
the cylinder for ¢o <O < Zﬂ-ﬁo, i.e. the source is not under the shell slot,

because then the source is enclosed by a perfectly conducting medium which

~ precludes radiation. When the source is under the shell slot (—¢0 <6< ¢0) as

b —% a. then of course we have the familiar situation of a source on the perfectly
conducting cylinder. These comments are alsc supported by some additional
calculations for the c':ase of Figure 3 (ka = 0.40). These were done for

kb-ka =0.025, 0.010, 0.305 and the radiation was successively reduced as

kb-ka was decreased from 0.050. The other limit, that of increasing kb-ka

to infinity for a given ka has 20 practical significance. Increasing kb-ka beyond

0.20 we may expect the radiation alternatively to increase and decrease.
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We may a!s0 ask the physical question: How does the radiation get out
when the source (3 not diractly visible tahrough the slot? In an aftempt to read
some physics into the mathematice wa may compute the Fourier coefficient of
the E, component of the electric field (3) in the co-axial space. Taking the

cylinder slot voltage at 'a' volts, we have that

1 ' [~4 _____1_____ 1{} [ N ' , )Iﬂ
g k [Ban(erCnNn(kr) T Dn(ka, i0) {(__Jn(xr)Nn(kb) Nn(kr)Jn(kb) @
- [Jx'l(kr)Nl'l(ka) -Nl'l(kr)Jx'I(ka)] aoJo(nﬂo)} , (57)

where the approximate sign enters because we use the narrow slot approximation
for the shell slot field. The first few coefficients we cannot discuss without some
numerical computations. However, when kb <2 and n>> kb, we may use tie

small argument approximation of the cylindrical functions, and obtain

‘ ' ~ 1 Jrka ™1l kattl ke P71 oo
powtc [ B3, 00 +C N cr] = 57{[‘5‘) G G e

1 n+l

n- n-1
kr Ka ka X
+ [(-ES—) - (E—) ('kT) J aoJo(nﬂo)} , kb<2, n>kb. (58)

From (58) we have that on the cylinder surface

1 jnO
s ' + ' ~ G
jwp k [Ban(ka) CnNn(ka)] 5= € (59)
and on the shell surface
~ 1
331 1 + 1 ) R .
jwi k I:Ban(kb) CnNn(kb] e aoJo(ngbo) (60)

It is clear that many coefficients are necessary to approximate reasonably well

the E 9 component in the co-axial space. The same statement appiies to the
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other two fizld components. No Fcurier coefficient aione under any conditions
dominates the field components in the cc-axial region, even in the case when
for some particular coefficient Dn(ka,kb) - (0. ¥rom this behavior of the
Fourier coefficients we may conclude .that no simpie model may be devised

to expiain the iransfer of power thraugh the co-axial region. The power trans-

fer resulte from the interference of very many Fourier coefficients.

Cornclusions

We briefly summarize the salient features of the numerical results of
this study. With a fixed magnetic line source on the cylinder the addition of a
relatively close fitting slotted shell:

1) enhances radiation for all source and shell slot separation angles
@ when the diameter <0.5/7 2,

2) leaves radiation roughly unchanged when 0.5/7 X < the cylinder
diameter < i.1/x X, except for a deep minima in the vicinity of 6~ + 900,

3) enhances radiation when 1.1/ X < the cylinder diameter < 1.5/7 A
except for a deep minima in the vicirity of G~e+ 1100,

4) leaves radiation roughly unchanged when 1. 5/ X < the cylinder

diameter 2/7 X, except for a deep minima in the vicinity of 6~ + 450, + 135°.

The deep minima in case 2) is associated with the lowest root of
Dl(ka,kb) = 0, and in case 4) with the lowest root of Dz(ka, kb) = 0. It appears
that radiation wiil have no deep minima when Do(ka, kb) = 0, or very close to
zero. Some of the antenna parameters for which this will occur are shown in

Table I .
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We also note that the theoretical work on the problem has been carried
to the point where the numerical calculaticns can be carried out for wider slots,
if we so desire. In this particuiar theoretical work the solution of the Fredholm
integral equation of the first kind is based on the truncation of two infinite
matrices. It wouid appear that this particular method of solving the fundamental
integral equation of the problem has been put in the most favorable form for
carrying out further computations.

Some obvious extensions of the theoretical work accomplished so far
include r:onsicderation of a dielectric under the shell that is different from that
on the outside and the application of the method presented to the case of the
narrow, glot. On the basis of this study one would then be in a position to choose
a dielectric constant ratio such that for a narrow frequency band of interest the
cylinder antenna would radiate through the slotted shell for all angular positions
of the shell slot.

Another extension is to consider a finite thickness, partially transparent
plasma sheath with an infinite axial slot. The radiation Ehen would depend not
only cr. the energy that leaks out through the slot, but also on the leakage through
the plasma sheath itself. This is a new boundary value problem and it is expected
to be somewhat more difficult than the one discussed in this paper.

Another problem of some potential interest is to consider that the cylinder
slot is excited by a wedge waveguide which has a magn‘etic line source at the
origin. This in fact is a complete antenna problem. In order to {ind the slot

fields of the cylinder slot and the sheath slot we have to soive two simultaneous
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integral equations. The sciution of this problem would also show the extent to
w hich the shell depresses the cylinder siot field.
The further problem of relating these solutions to practical antenna
configurations is also of continuing importance. For this, physical intuition
and understanding of the canonicul problem may not be sufficient, and some

judicious experiments may have to be undertaken.
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